Information on Result #672330
Linear OA(2192, 524308, F2, 21) (dual of [524308, 524116, 22]-code), using construction X applied to Ce(20) ⊂ Ce(18) based on
- linear OA(2191, 524288, F2, 21) (dual of [524288, 524097, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 524287 = 219−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(2172, 524288, F2, 19) (dual of [524288, 524116, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 524287 = 219−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(21, 20, F2, 1) (dual of [20, 19, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2191, 524307, F2, 20) (dual of [524307, 524116, 21]-code) | [i] | Truncation | |
2 | Linear OOA(2192, 262154, F2, 2, 21) (dual of [(262154, 2), 524116, 22]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(2192, 174769, F2, 3, 21) (dual of [(174769, 3), 524115, 22]-NRT-code) | [i] | ||
4 | Linear OOA(2192, 131077, F2, 4, 21) (dual of [(131077, 4), 524116, 22]-NRT-code) | [i] | ||
5 | Linear OOA(2192, 104861, F2, 5, 21) (dual of [(104861, 5), 524113, 22]-NRT-code) | [i] | ||
6 | Linear OOA(2192, 87384, F2, 6, 21) (dual of [(87384, 6), 524112, 22]-NRT-code) | [i] | ||
7 | Linear OOA(2192, 74901, F2, 7, 21) (dual of [(74901, 7), 524115, 22]-NRT-code) | [i] | ||
8 | Linear OOA(2192, 65538, F2, 8, 21) (dual of [(65538, 8), 524112, 22]-NRT-code) | [i] | ||
9 | Linear OOA(2192, 52430, F2, 21, 21) (dual of [(52430, 21), 1100838, 22]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |