Information on Result #672617

Linear OA(2203, 32805, F2, 27) (dual of [32805, 32602, 28]-code), using construction X applied to Ce(26) ⊂ Ce(22) based on
  1. linear OA(2196, 32768, F2, 27) (dual of [32768, 32572, 28]-code), using an extension Ce(26) of the primitive narrow-sense BCH-code C(I) with length 32767 = 215−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(2166, 32768, F2, 23) (dual of [32768, 32602, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 32767 = 215−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(27, 37, F2, 3) (dual of [37, 30, 4]-code or 37-cap in PG(6,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2203, 32805, F2, 26) (dual of [32805, 32602, 27]-code) [i]Strength Reduction
2Linear OA(2204, 32806, F2, 27) (dual of [32806, 32602, 28]-code) [i]Code Embedding in Larger Space
3Linear OA(2205, 32807, F2, 27) (dual of [32807, 32602, 28]-code) [i]
4Linear OA(2206, 32808, F2, 27) (dual of [32808, 32602, 28]-code) [i]
5Linear OA(2207, 32809, F2, 27) (dual of [32809, 32602, 28]-code) [i]
6Linear OA(2202, 32804, F2, 26) (dual of [32804, 32602, 27]-code) [i]Truncation
7Linear OOA(2203, 16402, F2, 2, 27) (dual of [(16402, 2), 32601, 28]-NRT-code) [i]OOA Folding
8Linear OOA(2203, 10935, F2, 3, 27) (dual of [(10935, 3), 32602, 28]-NRT-code) [i]
9Linear OOA(2203, 8201, F2, 4, 27) (dual of [(8201, 4), 32601, 28]-NRT-code) [i]
10Linear OOA(2203, 6561, F2, 5, 27) (dual of [(6561, 5), 32602, 28]-NRT-code) [i]
11Linear OOA(2203, 5467, F2, 6, 27) (dual of [(5467, 6), 32599, 28]-NRT-code) [i]
12Linear OOA(2203, 4686, F2, 7, 27) (dual of [(4686, 7), 32599, 28]-NRT-code) [i]