Information on Result #673968

Linear OA(2110, 140, F2, 43) (dual of [140, 30, 44]-code), using construction X applied to Ce(42) ⊂ Ce(30) based on
  1. linear OA(299, 128, F2, 43) (dual of [128, 29, 44]-code), using an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(292, 128, F2, 31) (dual of [128, 36, 32]-code), using an extension Ce(30) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(211, 12, F2, 11) (dual of [12, 1, 12]-code or 12-arc in PG(10,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2110, 140, F2, 42) (dual of [140, 30, 43]-code) [i]Strength Reduction
2Linear OA(2110, 140, F2, 41) (dual of [140, 30, 42]-code) [i]
3Linear OA(2110, 140, F2, 40) (dual of [140, 30, 41]-code) [i]
4Linear OA(2111, 141, F2, 43) (dual of [141, 30, 44]-code) [i]Code Embedding in Larger Space
5Linear OA(2112, 142, F2, 43) (dual of [142, 30, 44]-code) [i]
6Linear OA(2113, 143, F2, 43) (dual of [143, 30, 44]-code) [i]
7Linear OA(2114, 144, F2, 43) (dual of [144, 30, 44]-code) [i]
8Linear OA(2109, 139, F2, 42) (dual of [139, 30, 43]-code) [i]Truncation
9Linear OA(2108, 138, F2, 41) (dual of [138, 30, 42]-code) [i]
10Linear OA(2107, 137, F2, 40) (dual of [137, 30, 41]-code) [i]
11Linear OOA(2110, 70, F2, 2, 43) (dual of [(70, 2), 30, 44]-NRT-code) [i]OOA Folding