Information on Result #674149
Linear OA(263, 64, F2, 63) (dual of [64, 1, 64]-code or 64-arc in PG(62,2)), using an extension Ce(62) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,62], and designed minimum distance d ≥ |I|+1 = 63
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(263, 64, F2, 62) (dual of [64, 1, 63]-code) | [i] | Strength Reduction | |
2 | Linear OA(263, 64, F2, 61) (dual of [64, 1, 62]-code) | [i] | ||
3 | Linear OA(263, 64, F2, 60) (dual of [64, 1, 61]-code) | [i] | ||
4 | Linear OA(263, 64, F2, 59) (dual of [64, 1, 60]-code) | [i] | ||
5 | Linear OA(263, 64, F2, 58) (dual of [64, 1, 59]-code) | [i] | ||
6 | Linear OA(263, 64, F2, 57) (dual of [64, 1, 58]-code) | [i] | ||
7 | Linear OA(263, 64, F2, 56) (dual of [64, 1, 57]-code) | [i] | ||
8 | Linear OA(263, 64, F2, 55) (dual of [64, 1, 56]-code) | [i] | ||
9 | Linear OA(263, 64, F2, 54) (dual of [64, 1, 55]-code) | [i] | ||
10 | Linear OA(263, 64, F2, 53) (dual of [64, 1, 54]-code) | [i] | ||
11 | Linear OA(263, 64, F2, 52) (dual of [64, 1, 53]-code) | [i] | ||
12 | Linear OA(263, 64, F2, 51) (dual of [64, 1, 52]-code) | [i] | ||
13 | Linear OA(263, 64, F2, 50) (dual of [64, 1, 51]-code) | [i] | ||
14 | Linear OA(263, 64, F2, 49) (dual of [64, 1, 50]-code) | [i] | ||
15 | Linear OA(263, 64, F2, 48) (dual of [64, 1, 49]-code) | [i] | ||
16 | Linear OA(263, 64, F2, 47) (dual of [64, 1, 48]-code) | [i] | ||
17 | Linear OA(263, 64, F2, 46) (dual of [64, 1, 47]-code) | [i] | ||
18 | Linear OA(263, 64, F2, 45) (dual of [64, 1, 46]-code) | [i] | ||
19 | Linear OA(263, 64, F2, 44) (dual of [64, 1, 45]-code) | [i] | ||
20 | Linear OA(263, 64, F2, 43) (dual of [64, 1, 44]-code) | [i] | ||
21 | Linear OA(264, 71, F2, 33) (dual of [71, 7, 34]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
22 | Linear OA(280, 87, F2, 41) (dual of [87, 7, 42]-code) | [i] | ✔ | |
23 | Linear OA(275, 82, F2, 39) (dual of [82, 7, 40]-code) | [i] | ✔ | |
24 | Linear OA(272, 79, F2, 37) (dual of [79, 7, 38]-code) | [i] | ✔ | |
25 | Linear OA(268, 75, F2, 35) (dual of [75, 7, 36]-code) | [i] | ✔ | |
26 | Linear OA(2106, 115, F2, 51) (dual of [115, 9, 52]-code) | [i] | ✔ | |
27 | Linear OA(275, 85, F2, 35) (dual of [85, 10, 36]-code) | [i] | ✔ | |
28 | Linear OA(272, 82, F2, 33) (dual of [82, 10, 34]-code) | [i] | ✔ | |
29 | Linear OA(297, 107, F2, 45) (dual of [107, 10, 46]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
30 | Linear OA(282, 92, F2, 39) (dual of [92, 10, 40]-code) | [i] | ✔ | |
31 | Linear OA(279, 89, F2, 37) (dual of [89, 10, 38]-code) | [i] | ✔ | |
32 | Linear OA(271, 81, F2, 33) (dual of [81, 10, 34]-code) | [i] | ✔ | |
33 | Linear OA(2109, 118, F2, 53) (dual of [118, 9, 54]-code) | [i] | ✔ | |
34 | Linear OA(2109, 117, F2, 54) (dual of [117, 8, 55]-code) | [i] | ✔ | |
35 | Linear OA(2107, 115, F2, 53) (dual of [115, 8, 54]-code) | [i] | ✔ | |
36 | Linear OA(268, 76, F2, 33) (dual of [76, 8, 34]-code) | [i] | ✔ |