Information on Result #674195

Linear OA(262, 80, F2, 27) (dual of [80, 18, 28]-code), using construction XX applied to Ce(26) ⊂ Ce(22) ⊂ Ce(20) based on
  1. linear OA(254, 64, F2, 27) (dual of [64, 10, 28]-code), using an extension Ce(26) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(248, 64, F2, 23) (dual of [64, 16, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(246, 64, F2, 21) (dual of [64, 18, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(25, 13, F2, 3) (dual of [13, 8, 4]-code or 13-cap in PG(4,2)), using
  5. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(262, 80, F2, 26) (dual of [80, 18, 27]-code) [i]Strength Reduction
2Linear OA(262, 80, F2, 25) (dual of [80, 18, 26]-code) [i]
3Linear OOA(262, 40, F2, 2, 27) (dual of [(40, 2), 18, 28]-NRT-code) [i]OOA Folding
4Linear OOA(262, 16, F2, 5, 27) (dual of [(16, 5), 18, 28]-NRT-code) [i]