Information on Result #674196

Linear OA(258, 76, F2, 25) (dual of [76, 18, 26]-code), using construction XX applied to Ce(26) ⊂ Ce(22) ⊂ Ce(20) based on
  1. linear OA(254, 64, F2, 27) (dual of [64, 10, 28]-code), using an extension Ce(26) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(248, 64, F2, 23) (dual of [64, 16, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(246, 64, F2, 21) (dual of [64, 18, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
  5. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(258, 76, F2, 24) (dual of [76, 18, 25]-code) [i]Strength Reduction
2Linear OOA(258, 38, F2, 2, 25) (dual of [(38, 2), 18, 26]-NRT-code) [i]OOA Folding