Information on Result #677141

Linear OA(3237, 243, F3, 161) (dual of [243, 6, 162]-code), using an extension Ce(160) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,160], and designed minimum distance d ≥ |I|+1 = 161

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3237, 243, F3, 160) (dual of [243, 6, 161]-code) [i]Strength Reduction
2Linear OA(3237, 243, F3, 159) (dual of [243, 6, 160]-code) [i]
3Linear OA(3237, 243, F3, 158) (dual of [243, 6, 159]-code) [i]
4Linear OA(3237, 243, F3, 157) (dual of [243, 6, 158]-code) [i]
5Linear OA(3237, 243, F3, 156) (dual of [243, 6, 157]-code) [i]
6Linear OA(3237, 243, F3, 155) (dual of [243, 6, 156]-code) [i]
7Linear OA(3237, 243, F3, 154) (dual of [243, 6, 155]-code) [i]
8Linear OA(3238, 244, F3, 161) (dual of [244, 6, 162]-code) [i]Code Embedding in Larger Space
9Linear OA(3239, 245, F3, 161) (dual of [245, 6, 162]-code) [i]
10Linear OA(3240, 246, F3, 161) (dual of [246, 6, 162]-code) [i]
11Linear OA(3236, 242, F3, 160) (dual of [242, 6, 161]-code) [i]Truncation
12Linear OA(3235, 241, F3, 159) (dual of [241, 6, 160]-code) [i]
13Linear OA(3234, 240, F3, 158) (dual of [240, 6, 159]-code) [i]
14Linear OA(3233, 239, F3, 157) (dual of [239, 6, 158]-code) [i]
15Linear OA(3232, 238, F3, 156) (dual of [238, 6, 157]-code) [i]
16Linear OA(3231, 237, F3, 155) (dual of [237, 6, 156]-code) [i]
17Linear OA(3229, 235, F3, 153) (dual of [235, 6, 154]-code) [i]
18Linear OA(3228, 234, F3, 152) (dual of [234, 6, 153]-code) [i]
19Linear OA(3227, 233, F3, 151) (dual of [233, 6, 152]-code) [i]
20Linear OA(3226, 232, F3, 150) (dual of [232, 6, 151]-code) [i]
21Linear OA(3225, 231, F3, 149) (dual of [231, 6, 150]-code) [i]
22Linear OA(3224, 230, F3, 148) (dual of [230, 6, 149]-code) [i]
23Linear OA(3223, 229, F3, 147) (dual of [229, 6, 148]-code) [i]
24Linear OA(3221, 227, F3, 145) (dual of [227, 6, 146]-code) [i]
25Linear OA(3220, 226, F3, 144) (dual of [226, 6, 145]-code) [i]
26Linear OA(3243, 249, F3, 162) (dual of [249, 6, 163]-code) [i]Juxtaposition
27Linear OA(3244, 250, F3, 163) (dual of [250, 6, 164]-code) [i]
28Linear OA(3247, 253, F3, 165) (dual of [253, 6, 166]-code) [i]
29Linear OA(3248, 254, F3, 166) (dual of [254, 6, 167]-code) [i]
30Linear OA(3249, 255, F3, 167) (dual of [255, 6, 168]-code) [i]
31Linear OA(3243, 249, F3, 163) (dual of [249, 6, 164]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
32Linear OA(3248, 254, F3, 167) (dual of [254, 6, 168]-code) [i]
33Linear OA(3238, 249, F3, 154) (dual of [249, 11, 155]-code) [i]
34Linear OA(3245, 252, F3, 161) (dual of [252, 7, 162]-code) [i]
35Linear OA(3247, 256, F3, 161) (dual of [256, 9, 162]-code) [i]
36Linear OA(3248, 258, F3, 161) (dual of [258, 10, 162]-code) [i]
37Linear OA(3249, 260, F3, 161) (dual of [260, 11, 162]-code) [i]
38Linear OA(3243, 254, F3, 158) (dual of [254, 11, 159]-code) [i]
39Linear OA(3239, 247, F3, 155) (dual of [247, 8, 156]-code) [i]
40Linear OA(3248, 259, F3, 161) (dual of [259, 11, 162]-code) [i]
41Linear OA(3250, 272, F3, 136) (dual of [272, 22, 137]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
42Linear OOA(3237, 81, F3, 3, 161) (dual of [(81, 3), 6, 162]-NRT-code) [i]OOA Folding