Information on Result #677500

Linear OA(3164, 184, F3, 92) (dual of [184, 20, 93]-code), using construction X applied to Ce(91) ⊂ Ce(90) based on
  1. linear OA(3164, 183, F3, 92) (dual of [183, 19, 93]-code), using an extension Ce(91) of the narrow-sense BCH-code C(I) with length 182 | 36−1, defining interval I = [1,91], and designed minimum distance d ≥ |I|+1 = 92 [i]
  2. linear OA(3163, 183, F3, 91) (dual of [183, 20, 92]-code), using an extension Ce(90) of the narrow-sense BCH-code C(I) with length 182 | 36−1, defining interval I = [1,90], and designed minimum distance d ≥ |I|+1 = 91 [i]
  3. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3164, 184, F3, 91) (dual of [184, 20, 92]-code) [i]Strength Reduction
2Linear OA(3164, 184, F3, 90) (dual of [184, 20, 91]-code) [i]
3Linear OA(3164, 184, F3, 89) (dual of [184, 20, 90]-code) [i]
4Linear OA(3164, 184, F3, 88) (dual of [184, 20, 89]-code) [i]
5Linear OA(3164, 184, F3, 87) (dual of [184, 20, 88]-code) [i]
6Linear OA(3164, 184, F3, 86) (dual of [184, 20, 87]-code) [i]
7Linear OA(3165, 185, F3, 92) (dual of [185, 20, 93]-code) [i]Code Embedding in Larger Space
8Linear OA(3166, 186, F3, 92) (dual of [186, 20, 93]-code) [i]
9Linear OA(3167, 187, F3, 92) (dual of [187, 20, 93]-code) [i]
10Linear OA(3168, 188, F3, 92) (dual of [188, 20, 93]-code) [i]
11Linear OA(3169, 189, F3, 92) (dual of [189, 20, 93]-code) [i]
12Linear OA(3161, 181, F3, 89) (dual of [181, 20, 90]-code) [i]Truncation
13Linear OA(3160, 180, F3, 88) (dual of [180, 20, 89]-code) [i]
14Linear OA(3159, 179, F3, 87) (dual of [179, 20, 88]-code) [i]
15Linear OA(3158, 178, F3, 86) (dual of [178, 20, 87]-code) [i]
16Linear OA(3157, 177, F3, 85) (dual of [177, 20, 86]-code) [i]
17Linear OA(3156, 176, F3, 84) (dual of [176, 20, 85]-code) [i]
18Linear OA(3155, 175, F3, 83) (dual of [175, 20, 84]-code) [i]
19Linear OA(3154, 174, F3, 82) (dual of [174, 20, 83]-code) [i]
20Linear OA(3153, 173, F3, 81) (dual of [173, 20, 82]-code) [i]
21Linear OA(3152, 172, F3, 80) (dual of [172, 20, 81]-code) [i]
22Linear OA(3151, 171, F3, 79) (dual of [171, 20, 80]-code) [i]
23Linear OA(3150, 170, F3, 78) (dual of [170, 20, 79]-code) [i]
24Linear OA(3149, 169, F3, 77) (dual of [169, 20, 78]-code) [i]
25Linear OA(3148, 168, F3, 76) (dual of [168, 20, 77]-code) [i]
26Linear OA(3147, 167, F3, 75) (dual of [167, 20, 76]-code) [i]
27Linear OA(3146, 166, F3, 74) (dual of [166, 20, 75]-code) [i]
28Linear OA(3145, 165, F3, 73) (dual of [165, 20, 74]-code) [i]
29Linear OA(3144, 164, F3, 72) (dual of [164, 20, 73]-code) [i]
30Linear OA(3179, 201, F3, 92) (dual of [201, 22, 93]-code) [i]Construction X with VarÅ¡amov Bound
31Linear OOA(3164, 92, F3, 2, 92) (dual of [(92, 2), 20, 93]-NRT-code) [i]OOA Folding