Information on Result #677553

Linear OA(384, 96, F3, 50) (dual of [96, 12, 51]-code), using construction XX applied to C([0,99]) ⊂ C([0,87]) ⊂ C([0,81]) based on
  1. linear OA(374, 80, F3, 50) (dual of [80, 6, 51]-code), using contraction [i] based on linear OA(3154, 160, F3, 101) (dual of [160, 6, 102]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,99], and minimum distance d ≥ |{−1,0,…,99}|+1 = 102 (BCH-bound) [i]
  2. linear OA(370, 80, F3, 44) (dual of [80, 10, 45]-code), using contraction [i] based on linear OA(3150, 160, F3, 89) (dual of [160, 10, 90]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,87], and minimum distance d ≥ |{−1,0,…,87}|+1 = 90 (BCH-bound) [i]
  3. linear OA(366, 80, F3, 41) (dual of [80, 14, 42]-code), using contraction [i] based on linear OA(3146, 160, F3, 83) (dual of [160, 14, 84]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,81], and minimum distance d ≥ |{−1,0,…,81}|+1 = 84 (BCH-bound) [i]
  4. linear OA(36, 12, F3, 5) (dual of [12, 6, 6]-code), using
  5. linear OA(32, 4, F3, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(384, 48, F3, 2, 50) (dual of [(48, 2), 12, 51]-NRT-code) [i]OOA Folding
2Linear OOA(384, 32, F3, 3, 50) (dual of [(32, 3), 12, 51]-NRT-code) [i]