Information on Result #677556

Linear OA(387, 102, F3, 50) (dual of [102, 15, 51]-code), using construction XX applied to C([0,99]) ⊂ C([0,81]) ⊂ C([0,79]) based on
  1. linear OA(374, 80, F3, 50) (dual of [80, 6, 51]-code), using contraction [i] based on linear OA(3154, 160, F3, 101) (dual of [160, 6, 102]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,99], and minimum distance d ≥ |{−1,0,…,99}|+1 = 102 (BCH-bound) [i]
  2. linear OA(366, 80, F3, 41) (dual of [80, 14, 42]-code), using contraction [i] based on linear OA(3146, 160, F3, 83) (dual of [160, 14, 84]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,81], and minimum distance d ≥ |{−1,0,…,81}|+1 = 84 (BCH-bound) [i]
  3. linear OA(365, 80, F3, 40) (dual of [80, 15, 41]-code), using contraction [i] based on linear OA(3145, 160, F3, 81) (dual of [160, 15, 82]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,79], and minimum distance d ≥ |{−1,0,…,79}|+1 = 82 (BCH-bound) [i]
  4. linear OA(312, 21, F3, 8) (dual of [21, 9, 9]-code), using
  5. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(387, 51, F3, 2, 50) (dual of [(51, 2), 15, 51]-NRT-code) [i]OOA Folding
2Linear OOA(387, 34, F3, 3, 50) (dual of [(34, 3), 15, 51]-NRT-code) [i]