Information on Result #677689

Linear OA(3113, 129, F3, 64) (dual of [129, 16, 65]-code), using construction XX applied to C1 = C([0,60]), C2 = C([1,66]), C3 = C1 + C2 = C([1,60]), and C∩ = C1 ∩ C2 = C([0,66]) based on
  1. linear OA(3106, 121, F3, 62) (dual of [121, 15, 63]-code), using the expurgated narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [0,60], and minimum distance d ≥ |{−1,0,…,60}|+1 = 63 (BCH-bound) [i]
  2. linear OA(3110, 121, F3, 66) (dual of [121, 11, 67]-code), using the narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [1,66], and designed minimum distance d ≥ |I|+1 = 67 [i]
  3. linear OA(3111, 121, F3, 68) (dual of [121, 10, 69]-code), using the expurgated narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [0,66], and minimum distance d ≥ |{−1,0,…,66}|+1 = 69 (BCH-bound) [i]
  4. linear OA(3105, 121, F3, 60) (dual of [121, 16, 61]-code), using the narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [1,60], and designed minimum distance d ≥ |I|+1 = 61 [i]
  5. linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
  6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3113, 129, F3, 63) (dual of [129, 16, 64]-code) [i]Strength Reduction
2Linear OA(3113, 129, F3, 62) (dual of [129, 16, 63]-code) [i]
3Linear OA(3113, 129, F3, 61) (dual of [129, 16, 62]-code) [i]
4Linear OA(3113, 129, F3, 60) (dual of [129, 16, 61]-code) [i]
5Linear OA(3113, 129, F3, 59) (dual of [129, 16, 60]-code) [i]
6Linear OA(3113, 129, F3, 58) (dual of [129, 16, 59]-code) [i]
7Linear OA(3111, 127, F3, 62) (dual of [127, 16, 63]-code) [i]Truncation
8Linear OA(3110, 126, F3, 61) (dual of [126, 16, 62]-code) [i]
9Linear OA(3109, 125, F3, 60) (dual of [125, 16, 61]-code) [i]
10Linear OA(3108, 124, F3, 59) (dual of [124, 16, 60]-code) [i]
11Linear OA(3106, 122, F3, 57) (dual of [122, 16, 58]-code) [i]
12Linear OA(3132, 155, F3, 64) (dual of [155, 23, 65]-code) [i]VarÅ¡amov–Edel Lengthening
13Linear OA(3133, 157, F3, 64) (dual of [157, 24, 65]-code) [i]
14Linear OA(3134, 159, F3, 64) (dual of [159, 25, 65]-code) [i]
15Linear OA(3135, 161, F3, 64) (dual of [161, 26, 65]-code) [i]
16Linear OA(3136, 163, F3, 64) (dual of [163, 27, 65]-code) [i]
17Linear OA(3129, 150, F3, 63) (dual of [150, 21, 64]-code) [i]Construction X with VarÅ¡amov Bound
18Linear OOA(3113, 64, F3, 2, 64) (dual of [(64, 2), 15, 65]-NRT-code) [i]OOA Folding
19Linear OOA(3113, 43, F3, 3, 64) (dual of [(43, 3), 16, 65]-NRT-code) [i]