Information on Result #677709
Linear OA(380, 81, F3, 80) (dual of [81, 1, 81]-code or 81-arc in PG(79,3)), using an extension Ce(79) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,79], and designed minimum distance d ≥ |I|+1 = 80
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(380, 81, F3, 79) (dual of [81, 1, 80]-code) | [i] | Strength Reduction | |
2 | Linear OA(380, 81, F3, 78) (dual of [81, 1, 79]-code) | [i] | ||
3 | Linear OA(380, 81, F3, 77) (dual of [81, 1, 78]-code) | [i] | ||
4 | Linear OA(380, 81, F3, 76) (dual of [81, 1, 77]-code) | [i] | ||
5 | Linear OA(380, 81, F3, 75) (dual of [81, 1, 76]-code) | [i] | ||
6 | Linear OA(380, 81, F3, 74) (dual of [81, 1, 75]-code) | [i] | ||
7 | Linear OA(380, 81, F3, 73) (dual of [81, 1, 74]-code) | [i] | ||
8 | Linear OA(380, 81, F3, 72) (dual of [81, 1, 73]-code) | [i] | ||
9 | Linear OA(380, 81, F3, 71) (dual of [81, 1, 72]-code) | [i] | ||
10 | Linear OA(380, 81, F3, 70) (dual of [81, 1, 71]-code) | [i] | ||
11 | Linear OA(380, 81, F3, 69) (dual of [81, 1, 70]-code) | [i] | ||
12 | Linear OA(380, 81, F3, 68) (dual of [81, 1, 69]-code) | [i] | ||
13 | Linear OA(380, 81, F3, 67) (dual of [81, 1, 68]-code) | [i] | ||
14 | Linear OA(380, 81, F3, 66) (dual of [81, 1, 67]-code) | [i] | ||
15 | Linear OA(380, 81, F3, 65) (dual of [81, 1, 66]-code) | [i] | ||
16 | Linear OA(380, 81, F3, 64) (dual of [81, 1, 65]-code) | [i] | ||
17 | Linear OA(380, 81, F3, 63) (dual of [81, 1, 64]-code) | [i] | ||
18 | Linear OA(380, 81, F3, 62) (dual of [81, 1, 63]-code) | [i] | ||
19 | Linear OA(380, 81, F3, 61) (dual of [81, 1, 62]-code) | [i] | ||
20 | Linear OA(3177, 218, F3, 80) (dual of [218, 41, 81]-code) | [i] | Varšamov–Edel Lengthening | |
21 | Linear OA(3179, 223, F3, 80) (dual of [223, 44, 81]-code) | [i] | ||
22 | Linear OA(3181, 228, F3, 80) (dual of [228, 47, 81]-code) | [i] | ||
23 | Linear OA(3184, 236, F3, 80) (dual of [236, 52, 81]-code) | [i] | ||
24 | Linear OA(3185, 239, F3, 80) (dual of [239, 54, 81]-code) | [i] | ||
25 | Linear OA(3189, 250, F3, 80) (dual of [250, 61, 81]-code) | [i] | ||
26 | Linear OA(3190, 253, F3, 80) (dual of [253, 63, 81]-code) | [i] | ||
27 | Linear OA(3191, 256, F3, 80) (dual of [256, 65, 81]-code) | [i] | ||
28 | Linear OA(3192, 259, F3, 80) (dual of [259, 67, 81]-code) | [i] | ||
29 | Linear OA(3193, 262, F3, 80) (dual of [262, 69, 81]-code) | [i] | ||
30 | Linear OA(3194, 265, F3, 80) (dual of [265, 71, 81]-code) | [i] | ||
31 | Linear OA(3199, 281, F3, 80) (dual of [281, 82, 81]-code) | [i] | ||
32 | Linear OA(3205, 302, F3, 80) (dual of [302, 97, 81]-code) | [i] | ||
33 | Linear OA(3208, 313, F3, 80) (dual of [313, 105, 81]-code) | [i] | ||
34 | Linear OA(3209, 317, F3, 80) (dual of [317, 108, 81]-code) | [i] | ||
35 | Linear OA(3210, 321, F3, 80) (dual of [321, 111, 81]-code) | [i] | ||
36 | Linear OA(3211, 325, F3, 80) (dual of [325, 114, 81]-code) | [i] | ||
37 | Linear OA(3212, 329, F3, 80) (dual of [329, 117, 81]-code) | [i] | ||
38 | Linear OA(3213, 333, F3, 80) (dual of [333, 120, 81]-code) | [i] | ||
39 | Linear OA(3214, 337, F3, 80) (dual of [337, 123, 81]-code) | [i] | ||
40 | Linear OA(3215, 341, F3, 80) (dual of [341, 126, 81]-code) | [i] | ||
41 | Linear OA(3216, 345, F3, 80) (dual of [345, 129, 81]-code) | [i] | ||
42 | Linear OA(3219, 358, F3, 80) (dual of [358, 139, 81]-code) | [i] | ||
43 | Linear OA(3221, 367, F3, 80) (dual of [367, 146, 81]-code) | [i] | ||
44 | Linear OA(3224, 381, F3, 80) (dual of [381, 157, 81]-code) | [i] | ||
45 | Linear OA(3235, 437, F3, 80) (dual of [437, 202, 81]-code) | [i] | ||
46 | Linear OA(3238, 454, F3, 80) (dual of [454, 216, 81]-code) | [i] | ||
47 | Linear OA(3239, 460, F3, 80) (dual of [460, 221, 81]-code) | [i] | ||
48 | Linear OA(3247, 509, F3, 80) (dual of [509, 262, 81]-code) | [i] | ||
49 | Linear OA(3250, 529, F3, 80) (dual of [529, 279, 81]-code) | [i] | ||
50 | Linear OA(381, 86, F3, 55) (dual of [86, 5, 56]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
51 | Linear OA(386, 91, F3, 59) (dual of [91, 5, 60]-code) | [i] | ✔ | |
52 | Linear OA(3124, 131, F3, 80) (dual of [131, 7, 81]-code) | [i] | ✔ | |
53 | Linear OA(3114, 121, F3, 74) (dual of [121, 7, 75]-code) | [i] | ✔ | |
54 | Linear OA(3110, 117, F3, 71) (dual of [117, 7, 72]-code) | [i] | ✔ | |
55 | Linear OA(3100, 107, F3, 65) (dual of [107, 7, 66]-code) | [i] | ✔ | |
56 | Linear OA(392, 99, F3, 59) (dual of [99, 7, 60]-code) | [i] | ✔ | |
57 | Linear OA(386, 93, F3, 56) (dual of [93, 7, 57]-code) | [i] | ✔ | |
58 | Linear OA(3143, 158, F3, 80) (dual of [158, 15, 81]-code) | [i] | ✔ | |
59 | Linear OA(3144, 160, F3, 80) (dual of [160, 16, 81]-code) | [i] | ✔ | |
60 | Linear OA(3118, 125, F3, 77) (dual of [125, 7, 78]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
61 | Linear OA(3108, 115, F3, 70) (dual of [115, 7, 71]-code) | [i] | ✔ | |
62 | Linear OA(3104, 111, F3, 68) (dual of [111, 7, 69]-code) | [i] | ✔ | |
63 | Linear OA(396, 103, F3, 62) (dual of [103, 7, 63]-code) | [i] | ✔ | |
64 | Linear OA(390, 97, F3, 59) (dual of [97, 7, 60]-code) | [i] | ✔ | |
65 | Linear OA(3113, 119, F3, 74) (dual of [119, 6, 75]-code) | [i] | ✔ | |
66 | Linear OA(389, 95, F3, 59) (dual of [95, 6, 60]-code) | [i] | ✔ | |
67 | Linear OA(384, 90, F3, 55) (dual of [90, 6, 56]-code) | [i] | ✔ |