Information on Result #681479
Linear OA(4181, 262, F4, 87) (dual of [262, 81, 88]-code), using construction X applied to Ce(86) ⊂ Ce(84) based on
- linear OA(4180, 256, F4, 87) (dual of [256, 76, 88]-code), using an extension Ce(86) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,86], and designed minimum distance d ≥ |I|+1 = 87 [i]
- linear OA(4175, 256, F4, 85) (dual of [256, 81, 86]-code), using an extension Ce(84) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,84], and designed minimum distance d ≥ |I|+1 = 85 [i]
- linear OA(41, 6, F4, 1) (dual of [6, 5, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(4181, 262, F4, 86) (dual of [262, 81, 87]-code) | [i] | Strength Reduction | |
2 | Linear OA(4181, 262, F4, 85) (dual of [262, 81, 86]-code) | [i] | ||
3 | Linear OA(4181, 262, F4, 84) (dual of [262, 81, 85]-code) | [i] | ||
4 | Linear OA(4181, 262, F4, 83) (dual of [262, 81, 84]-code) | [i] | ||
5 | Linear OA(4181, 262, F4, 82) (dual of [262, 81, 83]-code) | [i] | ||
6 | Linear OA(4181, 262, F4, 81) (dual of [262, 81, 82]-code) | [i] | ||
7 | Linear OA(4181, 262, F4, 80) (dual of [262, 81, 81]-code) | [i] | ||
8 | Linear OA(4181, 262, F4, 79) (dual of [262, 81, 80]-code) | [i] | ||
9 | Linear OA(4181, 262, F4, 78) (dual of [262, 81, 79]-code) | [i] | ||
10 | Linear OA(4182, 263, F4, 87) (dual of [263, 81, 88]-code) | [i] | Code Embedding in Larger Space | |
11 | Linear OA(4183, 264, F4, 87) (dual of [264, 81, 88]-code) | [i] | ||
12 | Linear OA(4180, 261, F4, 86) (dual of [261, 81, 87]-code) | [i] | Truncation | |
13 | Linear OA(4179, 260, F4, 85) (dual of [260, 81, 86]-code) | [i] | ||
14 | Linear OA(4178, 259, F4, 84) (dual of [259, 81, 85]-code) | [i] | ||
15 | Linear OA(4177, 258, F4, 83) (dual of [258, 81, 84]-code) | [i] | ||
16 | Linear OA(4173, 254, F4, 79) (dual of [254, 81, 80]-code) | [i] | ||
17 | Linear OA(4172, 253, F4, 78) (dual of [253, 81, 79]-code) | [i] | ||
18 | Linear OA(4171, 252, F4, 77) (dual of [252, 81, 78]-code) | [i] | ||
19 | Linear OA(4170, 251, F4, 76) (dual of [251, 81, 77]-code) | [i] | ||
20 | Linear OA(4169, 250, F4, 75) (dual of [250, 81, 76]-code) | [i] | ||
21 | Linear OA(4168, 249, F4, 74) (dual of [249, 81, 75]-code) | [i] | ||
22 | Linear OA(4167, 248, F4, 73) (dual of [248, 81, 74]-code) | [i] | ||
23 | Linear OA(4166, 247, F4, 72) (dual of [247, 81, 73]-code) | [i] | ||
24 | Linear OA(4165, 246, F4, 71) (dual of [246, 81, 72]-code) | [i] | ||
25 | Linear OA(4164, 245, F4, 70) (dual of [245, 81, 71]-code) | [i] | ||
26 | Linear OA(4163, 244, F4, 69) (dual of [244, 81, 70]-code) | [i] | ||
27 | Linear OA(4162, 243, F4, 68) (dual of [243, 81, 69]-code) | [i] | ||
28 | Linear OA(4189, 276, F4, 87) (dual of [276, 87, 88]-code) | [i] | Varšamov–Edel Lengthening | |
29 | Linear OA(4190, 279, F4, 87) (dual of [279, 89, 88]-code) | [i] | ||
30 | Linear OA(4185, 267, F4, 87) (dual of [267, 82, 88]-code) | [i] | Construction X with Varšamov Bound | |
31 | Linear OA(4186, 269, F4, 87) (dual of [269, 83, 88]-code) | [i] | ||
32 | Linear OA(4187, 271, F4, 87) (dual of [271, 84, 88]-code) | [i] | ||
33 | Linear OOA(4181, 131, F4, 2, 87) (dual of [(131, 2), 81, 88]-NRT-code) | [i] | OOA Folding | |
34 | Linear OOA(4181, 87, F4, 3, 87) (dual of [(87, 3), 80, 88]-NRT-code) | [i] |