Information on Result #681991

Linear OA(471, 88, F4, 39) (dual of [88, 17, 40]-code), using construction XX applied to C1 = C([0,80]), C2 = C([1,125]), C3 = C1 + C2 = C([1,80]), and C∩ = C1 ∩ C2 = C([0,125]) based on
  1. linear OA(447, 63, F4, 27) (dual of [63, 16, 28]-code), using contraction [i] based on linear OA(4173, 189, F4, 83) (dual of [189, 16, 84]-code), using the expurgated narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [0,80], and minimum distance d ≥ |{−2,−1,…,80}|+1 = 84 (BCH-bound) [i]
  2. linear OA(455, 63, F4, 41) (dual of [63, 8, 42]-code), using contraction [i] based on linear OA(4181, 189, F4, 125) (dual of [189, 8, 126]-code), using the narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [1,125], and designed minimum distance d ≥ |I|+1 = 126 [i]
  3. linear OA(456, 63, F4, 42) (dual of [63, 7, 43]-code), using contraction [i] based on linear OA(4182, 189, F4, 128) (dual of [189, 7, 129]-code), using the expurgated narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [0,125], and minimum distance d ≥ |{−2,−1,…,125}|+1 = 129 (BCH-bound) [i]
  4. linear OA(446, 63, F4, 26) (dual of [63, 17, 27]-code), using contraction [i] based on linear OA(4172, 189, F4, 80) (dual of [189, 17, 81]-code), using the narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [1,80], and designed minimum distance d ≥ |I|+1 = 81 [i]
  5. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(415, 24, F4, 11) (dual of [24, 9, 12]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(471, 44, F4, 2, 39) (dual of [(44, 2), 17, 40]-NRT-code) [i]OOA Folding