Information on Result #682018

Linear OA(464, 91, F4, 31) (dual of [91, 27, 32]-code), using construction XX applied to C1 = C([0,28]), C2 = C([1,29]), C3 = C1 + C2 = C([1,28]), and C∩ = C1 ∩ C2 = C([0,29]) based on
  1. linear OA(459, 85, F4, 30) (dual of [85, 26, 31]-code), using the expurgated narrow-sense BCH-code C(I) with length 85 | 44−1, defining interval I = [0,28], and minimum distance d ≥ |{−1,0,…,28}|+1 = 31 (BCH-bound) [i]
  2. linear OA(462, 85, F4, 29) (dual of [85, 23, 30]-code), using the narrow-sense BCH-code C(I) with length 85 | 44−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(463, 85, F4, 31) (dual of [85, 22, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 85 | 44−1, defining interval I = [0,29], and minimum distance d ≥ |{−1,0,…,29}|+1 = 32 (BCH-bound) [i]
  4. linear OA(458, 85, F4, 28) (dual of [85, 27, 29]-code), using the narrow-sense BCH-code C(I) with length 85 | 44−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
  6. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(463, 90, F4, 30) (dual of [90, 27, 31]-code) [i]Truncation