Information on Result #685941

Linear OA(750, 65, F7, 33) (dual of [65, 15, 34]-code), using construction XX applied to C1 = C([0,49]), C2 = C([1,65]), C3 = C1 + C2 = C([1,49]), and C∩ = C1 ∩ C2 = C([0,65]) based on
  1. linear OA(734, 48, F7, 25) (dual of [48, 14, 26]-code), using contraction [i] based on linear OA(782, 96, F7, 51) (dual of [96, 14, 52]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,49], and minimum distance d ≥ |{−1,0,…,49}|+1 = 52 (BCH-bound) [i]
  2. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using contraction [i] based on linear OA(788, 96, F7, 65) (dual of [96, 8, 66]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,65], and designed minimum distance d ≥ |I|+1 = 66 [i]
  3. linear OA(741, 48, F7, 33) (dual of [48, 7, 34]-code), using contraction [i] based on linear OA(789, 96, F7, 67) (dual of [96, 7, 68]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,65], and minimum distance d ≥ |{−1,0,…,65}|+1 = 68 (BCH-bound) [i]
  4. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using contraction [i] based on linear OA(781, 96, F7, 49) (dual of [96, 15, 50]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  5. linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(79, 16, F7, 7) (dual of [16, 7, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(753, 71, F7, 33) (dual of [71, 18, 34]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(754, 74, F7, 33) (dual of [74, 20, 34]-code) [i]