Information on Result #686016

Linear OA(743, 63, F7, 25) (dual of [63, 20, 26]-code), using construction XX applied to C1 = C([0,21]), C2 = C([1,22]), C3 = C1 + C2 = C([1,21]), and C∩ = C1 ∩ C2 = C([0,22]) based on
  1. linear OA(738, 57, F7, 24) (dual of [57, 19, 25]-code), using the expurgated narrow-sense BCH-code C(I) with length 57 | 73−1, defining interval I = [0,21], and minimum distance d ≥ |{−2,−1,…,21}|+1 = 25 (BCH-bound) [i]
  2. linear OA(740, 57, F7, 22) (dual of [57, 17, 23]-code), using the narrow-sense BCH-code C(I) with length 57 | 73−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(741, 57, F7, 25) (dual of [57, 16, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 57 | 73−1, defining interval I = [0,22], and minimum distance d ≥ |{−2,−1,…,22}|+1 = 26 (BCH-bound) [i]
  4. linear OA(737, 57, F7, 21) (dual of [57, 20, 22]-code), using the narrow-sense BCH-code C(I) with length 57 | 73−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(72, 3, F7, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,7)), using
  6. linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.