Information on Result #686154

Linear OA(745, 61, F7, 29) (dual of [61, 16, 30]-code), using construction XX applied to Ce(31) ⊂ Ce(24) ⊂ Ce(23) based on
  1. linear OA(740, 49, F7, 32) (dual of [49, 9, 33]-code), using an extension Ce(31) of the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,31], and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(734, 49, F7, 25) (dual of [49, 15, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(733, 49, F7, 24) (dual of [49, 16, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(74, 11, F7, 3) (dual of [11, 7, 4]-code or 11-cap in PG(3,7)), using
  5. linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(745, 61, F7, 28) (dual of [61, 16, 29]-code) [i]Strength Reduction
2Linear OA(747, 65, F7, 29) (dual of [65, 18, 30]-code) [i]VarÅ¡amov–Edel Lengthening
3Linear OA(748, 68, F7, 29) (dual of [68, 20, 30]-code) [i]