Information on Result #690836

Linear OA(984, 109, F9, 52) (dual of [109, 25, 53]-code), using construction XX applied to C([1,105]) ⊂ C([1,81]) ⊂ C([1,79]) based on
  1. linear OA(969, 80, F9, 52) (dual of [80, 11, 53]-code), using contraction [i] based on linear OA(9149, 160, F9, 105) (dual of [160, 11, 106]-code), using the narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [1,105], and designed minimum distance d ≥ |I|+1 = 106 [i]
  2. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using contraction [i] based on linear OA(9136, 160, F9, 81) (dual of [160, 24, 82]-code), using the narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [1,81], and designed minimum distance d ≥ |I|+1 = 82 [i]
  3. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using contraction [i] based on linear OA(9135, 160, F9, 79) (dual of [160, 25, 80]-code), using the narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [1,79], and designed minimum distance d ≥ |I|+1 = 80 [i]
  4. linear OA(914, 28, F9, 11) (dual of [28, 14, 12]-code), using
  5. linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.