Information on Result #694795
Linear OA(2785, 531445, F27, 22) (dual of [531445, 531360, 23]-code), using construction X applied to Ce(21) ⊂ Ce(20) based on
- linear OA(2785, 531441, F27, 22) (dual of [531441, 531356, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 531440 = 274−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2781, 531441, F27, 21) (dual of [531441, 531360, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 531440 = 274−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(270, 4, F27, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(27100, 531509, F27, 22) (dual of [531509, 531409, 23]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(27101, 531513, F27, 22) (dual of [531513, 531412, 23]-code) | [i] | ||
3 | Linear OA(27102, 531521, F27, 22) (dual of [531521, 531419, 23]-code) | [i] | ||
4 | Linear OA(27103, 531527, F27, 22) (dual of [531527, 531424, 23]-code) | [i] | ||
5 | Linear OA(27104, 531553, F27, 22) (dual of [531553, 531449, 23]-code) | [i] | ||
6 | Linear OA(27105, 531631, F27, 22) (dual of [531631, 531526, 23]-code) | [i] | ||
7 | OA(27100, 531527, S27, 22) | [i] | ||
8 | OA(27101, 531545, S27, 22) | [i] | ||
9 | OA(27103, 531561, S27, 22) | [i] | ||
10 | Linear OOA(2785, 265722, F27, 2, 22) (dual of [(265722, 2), 531359, 23]-NRT-code) | [i] | OOA Folding | |
11 | Linear OOA(2785, 48313, F27, 22, 22) (dual of [(48313, 22), 1062801, 23]-NRT-code) | [i] | OA Folding and Stacking |