Information on Result #695077

Linear OA(2770, 19686, F27, 24) (dual of [19686, 19616, 25]-code), using construction X applied to Ce(23) ⊂ Ce(22) based on
  1. linear OA(2770, 19683, F27, 24) (dual of [19683, 19613, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(2767, 19683, F27, 23) (dual of [19683, 19616, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(270, 3, F27, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(9105, 19686, S9, 24) [i]Discarding Parts of the Base for OAs
2Linear OA(2784, 19734, F27, 24) (dual of [19734, 19650, 25]-code) [i](u, u+v)-Construction
3Linear OA(2785, 19738, F27, 24) (dual of [19738, 19653, 25]-code) [i]
4Linear OA(2786, 19750, F27, 24) (dual of [19750, 19664, 25]-code) [i]
5Linear OA(2787, 19754, F27, 24) (dual of [19754, 19667, 25]-code) [i]
6Linear OA(2788, 19762, F27, 24) (dual of [19762, 19674, 25]-code) [i]
7Linear OA(2789, 19768, F27, 24) (dual of [19768, 19679, 25]-code) [i]
8Linear OA(2790, 19770, F27, 24) (dual of [19770, 19680, 25]-code) [i]
9Linear OA(2791, 19794, F27, 24) (dual of [19794, 19703, 25]-code) [i]
10Linear OA(2792, 19872, F27, 24) (dual of [19872, 19780, 25]-code) [i]
11OA(2786, 19768, S27, 24) [i]
12OA(2788, 19786, S27, 24) [i]
13OA(2789, 19802, S27, 24) [i]
14OA(2790, 19804, S27, 24) [i]
15Linear OOA(2770, 9843, F27, 2, 24) (dual of [(9843, 2), 19616, 25]-NRT-code) [i]OOA Folding