Information on Result #700489

Linear OA(225, 31, F2, 14) (dual of [31, 6, 15]-code), using the primitive cyclic code C(A) with length 31 = 25−1, defining set A = {1,3,5,7,15}, and minimum distance d ≥ |{5,10,15,…,8}|+1 = 15 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(225, 31, F2, 13) (dual of [31, 6, 14]-code) [i]Strength Reduction
2Linear OA(225, 31, F2, 12) (dual of [31, 6, 13]-code) [i]
3Linear OA(227, 33, F2, 14) (dual of [33, 6, 15]-code) [i]Code Embedding in Larger Space
4Linear OA(240, 51, F2, 18) (dual of [51, 11, 19]-code) [i]Construction XX with Cyclic Codes
5Linear OA(236, 47, F2, 16) (dual of [47, 11, 17]-code) [i]
6Linear OA(239, 49, F2, 18) (dual of [49, 10, 19]-code) [i]
7Linear OA(235, 45, F2, 16) (dual of [45, 10, 17]-code) [i]
8Linear OA(2260, 287, F2, 110) (dual of [287, 27, 111]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
9Linear OA(2260, 286, F2, 110) (dual of [286, 26, 111]-code) [i]Construction X with De Boer–Brouwer Codes
10Linear OOA(225, 15, F2, 2, 14) (dual of [(15, 2), 5, 15]-NRT-code) [i]OOA Folding
11Linear OOA(225, 10, F2, 3, 14) (dual of [(10, 3), 5, 15]-NRT-code) [i]