Information on Result #700496

Linear OA(243, 63, F2, 17) (dual of [63, 20, 18]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,3,5,7,11,13,15,23}, and minimum distance d ≥ |{23,28,33,…,−23}|+1 = 18 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(243, 63, F2, 16) (dual of [63, 20, 17]-code) [i]Strength Reduction
2Linear OA(247, 67, F2, 19) (dual of [67, 20, 20]-code) [i]Construction X with Cyclic Codes
3Linear OA(264, 84, F2, 25) (dual of [84, 20, 26]-code) [i]
4Linear OA(251, 71, F2, 21) (dual of [71, 20, 22]-code) [i]Construction XX with Cyclic Codes
5Linear OOA(243, 21, F2, 3, 17) (dual of [(21, 3), 20, 18]-NRT-code) [i]OOA Folding