Information on Result #700500

Linear OA(260, 63, F2, 35) (dual of [63, 3, 36]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,5,7,9,11,13,15,21,23,31}, and minimum distance d ≥ |{−25,−14,−3,…,−29}|+1 = 36 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(260, 63, F2, 34) (dual of [63, 3, 35]-code) [i]Strength Reduction
2Linear OA(260, 63, F2, 33) (dual of [63, 3, 34]-code) [i]
3Linear OA(261, 64, F2, 35) (dual of [64, 3, 36]-code) [i]Code Embedding in Larger Space
4Linear OA(259, 62, F2, 34) (dual of [62, 3, 35]-code) [i]Truncation
5Linear OA(258, 61, F2, 33) (dual of [61, 3, 34]-code) [i]
6Linear OA(272, 82, F2, 34) (dual of [82, 10, 35]-code) [i]Construction X with Cyclic Codes
7Linear OA(269, 79, F2, 32) (dual of [79, 10, 33]-code) [i]
8Linear OA(280, 98, F2, 32) (dual of [98, 18, 33]-code) [i]Construction XX with Cyclic Codes
9Linear OOA(260, 21, F2, 3, 35) (dual of [(21, 3), 3, 36]-NRT-code) [i]OOA Folding