Information on Result #700508

Linear OA(261, 63, F2, 41) (dual of [63, 2, 42]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,5,7,9,11,13,15,23,27,31}, and minimum distance d ≥ |{−31,−20,−9,…,31}|+1 = 42 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(261, 63, F2, 40) (dual of [63, 2, 41]-code) [i]Strength Reduction
2Linear OA(261, 63, F2, 39) (dual of [63, 2, 40]-code) [i]
3Linear OA(261, 63, F2, 38) (dual of [63, 2, 39]-code) [i]
4Linear OA(261, 63, F2, 37) (dual of [63, 2, 38]-code) [i]
5Linear OA(261, 63, F2, 36) (dual of [63, 2, 37]-code) [i]
6Linear OA(260, 62, F2, 40) (dual of [62, 2, 41]-code) [i]Truncation
7Linear OA(259, 61, F2, 39) (dual of [61, 2, 40]-code) [i]
8Linear OA(257, 59, F2, 37) (dual of [59, 2, 38]-code) [i]
9Linear OA(256, 58, F2, 36) (dual of [58, 2, 37]-code) [i]
10Linear OA(254, 56, F2, 34) (dual of [56, 2, 35]-code) [i]
11Linear OA(253, 55, F2, 33) (dual of [55, 2, 34]-code) [i]
12Linear OA(251, 53, F2, 31) (dual of [53, 2, 32]-code) [i]
13Linear OA(250, 52, F2, 30) (dual of [52, 2, 31]-code) [i]
14Linear OA(248, 50, F2, 28) (dual of [50, 2, 29]-code) [i]
15Linear OA(273, 84, F2, 33) (dual of [84, 11, 34]-code) [i]Construction X with Cyclic Codes
16Linear OOA(261, 21, F2, 3, 41) (dual of [(21, 3), 2, 42]-NRT-code) [i]OOA Folding