Information on Result #700517

Linear OA(227, 78, F2, 8) (dual of [78, 51, 9]-code), using construction XX applied to C1 = C({0,1,3,31}), C2 = C([1,5]), C3 = C1 + C2 = C([1,3]), and C∩ = C1 ∩ C2 = C({0,1,3,5,31}) based on
  1. linear OA(219, 63, F2, 7) (dual of [63, 44, 8]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,31}, and minimum distance d ≥ |{−2,−1,…,4}|+1 = 8 (BCH-bound) [i]
  2. linear OA(218, 63, F2, 6) (dual of [63, 45, 7]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
  3. linear OA(225, 63, F2, 9) (dual of [63, 38, 10]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,5,31}, and minimum distance d ≥ |{−2,−1,…,6}|+1 = 10 (BCH-bound) [i]
  4. linear OA(212, 63, F2, 4) (dual of [63, 51, 5]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
  5. linear OA(21, 8, F2, 1) (dual of [8, 7, 2]-code), using
  6. linear OA(21, 7, F2, 1) (dual of [7, 6, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(227, 54, F2, 2, 8) (dual of [(54, 2), 81, 9]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(227, 54, F2, 3, 8) (dual of [(54, 3), 135, 9]-NRT-code) [i]
3Linear OOA(227, 54, F2, 4, 8) (dual of [(54, 4), 189, 9]-NRT-code) [i]
4Linear OOA(227, 54, F2, 5, 8) (dual of [(54, 5), 243, 9]-NRT-code) [i]
5Linear OOA(227, 54, F2, 6, 8) (dual of [(54, 6), 297, 9]-NRT-code) [i]
6Linear OOA(227, 54, F2, 7, 8) (dual of [(54, 7), 351, 9]-NRT-code) [i]
7Linear OA(228, 79, F2, 9) (dual of [79, 51, 10]-code) [i]Adding a Parity Check Bit
8Linear OOA(227, 39, F2, 2, 8) (dual of [(39, 2), 51, 9]-NRT-code) [i]OOA Folding
9Linear OOA(227, 26, F2, 3, 8) (dual of [(26, 3), 51, 9]-NRT-code) [i]