Information on Result #700519

Linear OA(225, 63, F2, 9) (dual of [63, 38, 10]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,5,31}, and minimum distance d ≥ |{−2,−1,…,6}|+1 = 10 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(227, 78, F2, 8) (dual of [78, 51, 9]-code) [i]Construction XX with Cyclic Codes
2Linear OA(227, 77, F2, 9) (dual of [77, 50, 10]-code) [i]
3Linear OA(240, 84, F2, 13) (dual of [84, 44, 14]-code) [i]
4Linear OA(2260, 573, F2, 57) (dual of [573, 313, 58]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
5Linear OA(2251, 573, F2, 55) (dual of [573, 322, 56]-code) [i]
6Linear OA(2242, 573, F2, 53) (dual of [573, 331, 54]-code) [i]
7Linear OA(2233, 573, F2, 51) (dual of [573, 340, 52]-code) [i]
8Linear OOA(225, 21, F2, 3, 9) (dual of [(21, 3), 38, 10]-NRT-code) [i]OOA Folding