Information on Result #700533

Linear OA(252, 63, F2, 25) (dual of [63, 11, 26]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,5,7,9,11,13,15,31}, and minimum distance d ≥ |{−4,−3,…,20}|+1 = 26 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(252, 63, F2, 24) (dual of [63, 11, 25]-code) [i]Strength Reduction
2Linear OA(251, 62, F2, 24) (dual of [62, 11, 25]-code) [i]Truncation
3Linear OA(260, 78, F2, 26) (dual of [78, 18, 27]-code) [i]Construction XX with Cyclic Codes
4Linear OA(256, 74, F2, 24) (dual of [74, 18, 25]-code) [i]
5Linear OA(260, 77, F2, 27) (dual of [77, 17, 28]-code) [i]
6Linear OA(256, 73, F2, 25) (dual of [73, 17, 26]-code) [i]
7Linear OA(280, 98, F2, 32) (dual of [98, 18, 33]-code) [i]
8Linear OOA(252, 31, F2, 2, 25) (dual of [(31, 2), 10, 26]-NRT-code) [i]OOA Folding
9Linear OOA(252, 21, F2, 3, 25) (dual of [(21, 3), 11, 26]-NRT-code) [i]