Information on Result #700587

Linear OA(264, 155, F2, 17) (dual of [155, 91, 18]-code), using construction XX applied to C1 = C({0,1,3,5,7,9,31,63}), C2 = C([0,11]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C({0,1,3,5,7,9,11,31,63}) based on
  1. linear OA(250, 127, F2, 15) (dual of [127, 77, 16]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,31,63}, and minimum distance d ≥ |{−4,−3,…,10}|+1 = 16 (BCH-bound) [i]
  2. linear OA(243, 127, F2, 13) (dual of [127, 84, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 14 [i]
  3. linear OA(257, 127, F2, 17) (dual of [127, 70, 18]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,31,63}, and minimum distance d ≥ |{−4,−3,…,12}|+1 = 18 (BCH-bound) [i]
  4. linear OA(236, 127, F2, 11) (dual of [127, 91, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 12 [i]
  5. linear OA(26, 20, F2, 3) (dual of [20, 14, 4]-code or 20-cap in PG(5,2)), using
  6. linear OA(21, 8, F2, 1) (dual of [8, 7, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(263, 154, F2, 16) (dual of [154, 91, 17]-code) [i]Truncation
2Linear OOA(264, 77, F2, 2, 17) (dual of [(77, 2), 90, 18]-NRT-code) [i]OOA Folding
3Linear OOA(264, 51, F2, 3, 17) (dual of [(51, 3), 89, 18]-NRT-code) [i]