Information on Result #700650

Linear OA(2149, 178, F2, 58) (dual of [178, 29, 59]-code), using construction XX applied to C1 = C({0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,63}), C2 = C([1,47]), C3 = C1 + C2 = C([1,31]), and C∩ = C1 ∩ C2 = C({0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,47,63}) based on
  1. linear OA(2106, 127, F2, 47) (dual of [127, 21, 48]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,63}, and minimum distance d ≥ |{−4,−3,…,42}|+1 = 48 (BCH-bound) [i]
  2. linear OA(2112, 127, F2, 54) (dual of [127, 15, 55]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,47], and designed minimum distance d ≥ |I|+1 = 55 [i]
  3. linear OA(2120, 127, F2, 63) (dual of [127, 7, 64]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,47,63}, and minimum distance d ≥ |{0,9,18,…,50}|+1 = 64 (BCH-bound) [i]
  4. linear OA(298, 127, F2, 42) (dual of [127, 29, 43]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  5. linear OA(25, 13, F2, 3) (dual of [13, 8, 4]-code or 13-cap in PG(4,2)), using
  6. linear OA(224, 38, F2, 11) (dual of [38, 14, 12]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2149, 178, F2, 57) (dual of [178, 29, 58]-code) [i]Strength Reduction
2Linear OA(2150, 179, F2, 59) (dual of [179, 29, 60]-code) [i]Adding a Parity Check Bit
3Linear OOA(2149, 89, F2, 2, 58) (dual of [(89, 2), 29, 59]-NRT-code) [i]OOA Folding