Information on Result #700668

Linear OA(2150, 171, F2, 62) (dual of [171, 21, 63]-code), using construction XX applied to C1 = C({0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,63}), C2 = C([0,47]), C3 = C1 + C2 = C([0,43]), and C∩ = C1 ∩ C2 = C({0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,47,63}) based on
  1. linear OA(2113, 127, F2, 51) (dual of [127, 14, 52]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,63}, and minimum distance d ≥ |{−4,−3,…,46}|+1 = 52 (BCH-bound) [i]
  2. linear OA(2113, 127, F2, 55) (dual of [127, 14, 56]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [0,47], and designed minimum distance d ≥ |I|+1 = 56 [i]
  3. linear OA(2120, 127, F2, 63) (dual of [127, 7, 64]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,47,63}, and minimum distance d ≥ |{0,9,18,…,50}|+1 = 64 (BCH-bound) [i]
  4. linear OA(2106, 127, F2, 47) (dual of [127, 21, 48]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [0,43], and designed minimum distance d ≥ |I|+1 = 48 [i]
  5. linear OA(211, 18, F2, 6) (dual of [18, 7, 7]-code), using
  6. linear OA(219, 26, F2, 10) (dual of [26, 7, 11]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2151, 172, F2, 63) (dual of [172, 21, 64]-code) [i]Adding a Parity Check Bit
2Linear OOA(2150, 57, F2, 3, 62) (dual of [(57, 3), 21, 63]-NRT-code) [i]OOA Folding
3Linear OOA(2150, 34, F2, 5, 62) (dual of [(34, 5), 20, 63]-NRT-code) [i]