Information on Result #700713
Linear OA(316, 80, F3, 6) (dual of [80, 64, 7]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 7
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(339, 94, F3, 13) (dual of [94, 55, 14]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OOA(316, 65, F3, 2, 6) (dual of [(65, 2), 114, 7]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
3 | Linear OOA(316, 65, F3, 3, 6) (dual of [(65, 3), 179, 7]-NRT-code) | [i] | ||
4 | Linear OOA(316, 65, F3, 4, 6) (dual of [(65, 4), 244, 7]-NRT-code) | [i] | ||
5 | Linear OOA(316, 65, F3, 5, 6) (dual of [(65, 5), 309, 7]-NRT-code) | [i] | ||
6 | Linear OA(323, 91, F3, 8) (dual of [91, 68, 9]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(337, 101, F3, 12) (dual of [101, 64, 13]-code) | [i] | ✔ | |
8 | Linear OA(3245, 531517, F3, 29) (dual of [531517, 531272, 30]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
9 | Linear OA(3221, 531517, F3, 26) (dual of [531517, 531296, 27]-code) | [i] | ||
10 | Linear OA(3248, 177218, F3, 32) (dual of [177218, 176970, 33]-code) | [i] | ||
11 | Linear OA(3226, 177218, F3, 29) (dual of [177218, 176992, 30]-code) | [i] | ||
12 | Linear OA(3204, 177218, F3, 26) (dual of [177218, 177014, 27]-code) | [i] | ||
13 | Linear OA(3247, 59115, F3, 35) (dual of [59115, 58868, 36]-code) | [i] | ||
14 | Linear OA(3227, 59115, F3, 32) (dual of [59115, 58888, 33]-code) | [i] | ||
15 | Linear OA(3207, 59115, F3, 29) (dual of [59115, 58908, 30]-code) | [i] | ||
16 | Linear OA(3187, 59115, F3, 26) (dual of [59115, 58928, 27]-code) | [i] | ||
17 | Linear OA(3242, 19744, F3, 38) (dual of [19744, 19502, 39]-code) | [i] | ||
18 | Linear OA(3224, 19744, F3, 35) (dual of [19744, 19520, 36]-code) | [i] | ||
19 | Linear OA(3206, 19744, F3, 32) (dual of [19744, 19538, 33]-code) | [i] | ||
20 | Linear OA(3188, 19744, F3, 29) (dual of [19744, 19556, 30]-code) | [i] | ||
21 | Linear OA(3170, 19744, F3, 26) (dual of [19744, 19574, 27]-code) | [i] | ||
22 | Linear OA(3249, 6617, F3, 44) (dual of [6617, 6368, 45]-code) | [i] | ||
23 | Linear OA(3233, 6617, F3, 41) (dual of [6617, 6384, 42]-code) | [i] | ||
24 | Linear OA(3217, 6617, F3, 38) (dual of [6617, 6400, 39]-code) | [i] | ||
25 | Linear OA(3201, 6617, F3, 35) (dual of [6617, 6416, 36]-code) | [i] | ||
26 | Linear OA(3185, 6617, F3, 32) (dual of [6617, 6432, 33]-code) | [i] | ||
27 | Linear OA(3169, 6617, F3, 29) (dual of [6617, 6448, 30]-code) | [i] | ||
28 | Linear OA(3248, 2238, F3, 50) (dual of [2238, 1990, 51]-code) | [i] | ||
29 | Linear OA(3234, 2238, F3, 47) (dual of [2238, 2004, 48]-code) | [i] | ||
30 | Linear OA(3220, 2238, F3, 44) (dual of [2238, 2018, 45]-code) | [i] | ||
31 | Linear OA(3206, 2238, F3, 41) (dual of [2238, 2032, 42]-code) | [i] | ||
32 | Linear OA(3192, 2238, F3, 38) (dual of [2238, 2046, 39]-code) | [i] | ||
33 | Linear OA(3178, 2238, F3, 35) (dual of [2238, 2060, 36]-code) | [i] | ||
34 | Linear OA(3164, 2238, F3, 32) (dual of [2238, 2074, 33]-code) | [i] | ||
35 | Linear OA(3150, 2238, F3, 29) (dual of [2238, 2088, 30]-code) | [i] | ||
36 | Linear OA(3136, 2238, F3, 26) (dual of [2238, 2102, 27]-code) | [i] | ||
37 | Linear OA(3224, 775, F3, 53) (dual of [775, 551, 54]-code) | [i] | ||
38 | Linear OA(3212, 775, F3, 50) (dual of [775, 563, 51]-code) | [i] | ||
39 | Linear OA(3200, 775, F3, 47) (dual of [775, 575, 48]-code) | [i] | ||
40 | Linear OA(3188, 775, F3, 44) (dual of [775, 587, 45]-code) | [i] | ||
41 | Linear OA(3176, 775, F3, 41) (dual of [775, 599, 42]-code) | [i] | ||
42 | Linear OA(3164, 775, F3, 38) (dual of [775, 611, 39]-code) | [i] |