Information on Result #700744

Linear OA(338, 93, F3, 14) (dual of [93, 55, 15]-code), using construction XX applied to C1 = C({0,1,2,4,5,7,8,26,53}), C2 = C([0,10]), C3 = C1 + C2 = C([0,8]), and C∩ = C1 ∩ C2 = C({0,1,2,4,5,7,8,10,26,53}) based on
  1. linear OA(333, 80, F3, 13) (dual of [80, 47, 14]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,26,53}, and minimum distance d ≥ |{−3,−2,…,9}|+1 = 14 (BCH-bound) [i]
  2. linear OA(327, 80, F3, 11) (dual of [80, 53, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  3. linear OA(335, 80, F3, 14) (dual of [80, 45, 15]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,10,26,53}, and minimum distance d ≥ |{−3,−2,…,10}|+1 = 15 (BCH-bound) [i]
  4. linear OA(325, 80, F3, 10) (dual of [80, 55, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 11 [i]
  5. linear OA(33, 11, F3, 2) (dual of [11, 8, 3]-code), using
  6. linear OA(30, 2, F3, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.