Information on Result #700775
Linear OA(317, 80, F3, 7) (dual of [80, 63, 8]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,7,14,17,22}, and minimum distance d ≥ |{−21,−14,−7,…,21}|+1 = 8 (BCH-bound)
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(341, 96, F3, 14) (dual of [96, 55, 15]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(343, 100, F3, 14) (dual of [100, 57, 15]-code) | [i] | ||
3 | Linear OA(3238, 59127, F3, 33) (dual of [59127, 58889, 34]-code) | [i] | Construction X with Cyclic Codes | |
4 | Linear OA(3216, 19755, F3, 33) (dual of [19755, 19539, 34]-code) | [i] | ||
5 | Linear OA(3242, 6627, F3, 41) (dual of [6627, 6385, 42]-code) | [i] | ||
6 | Linear OA(3226, 6627, F3, 39) (dual of [6627, 6401, 40]-code) | [i] | ||
7 | Linear OA(3194, 6627, F3, 33) (dual of [6627, 6433, 34]-code) | [i] | ||
8 | Linear OA(3242, 2247, F3, 47) (dual of [2247, 2005, 48]-code) | [i] | ||
9 | Linear OA(3228, 2247, F3, 45) (dual of [2247, 2019, 46]-code) | [i] | ||
10 | Linear OA(3214, 2247, F3, 41) (dual of [2247, 2033, 42]-code) | [i] | ||
11 | Linear OA(3200, 2247, F3, 39) (dual of [2247, 2047, 40]-code) | [i] | ||
12 | Linear OA(3172, 2247, F3, 33) (dual of [2247, 2075, 34]-code) | [i] | ||
13 | Linear OA(3234, 783, F3, 53) (dual of [783, 549, 54]-code) | [i] | ||
14 | Linear OA(3222, 783, F3, 51) (dual of [783, 561, 52]-code) | [i] | ||
15 | Linear OA(3198, 783, F3, 45) (dual of [783, 585, 46]-code) | [i] | ||
16 | Linear OA(3186, 783, F3, 41) (dual of [783, 597, 42]-code) | [i] | ||
17 | Linear OA(3174, 783, F3, 39) (dual of [783, 609, 40]-code) | [i] | ||
18 | Linear OA(3150, 783, F3, 33) (dual of [783, 633, 34]-code) | [i] | ||
19 | Linear OA(3228, 775, F3, 54) (dual of [775, 547, 55]-code) | [i] | ||
20 | Linear OA(319, 90, F3, 7) (dual of [90, 71, 8]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
21 | Linear OA(3234, 531518, F3, 28) (dual of [531518, 531284, 29]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
22 | Linear OA(3238, 177219, F3, 31) (dual of [177219, 176981, 32]-code) | [i] | ||
23 | Linear OA(3216, 177219, F3, 28) (dual of [177219, 177003, 29]-code) | [i] | ||
24 | Linear OA(3238, 59116, F3, 34) (dual of [59116, 58878, 35]-code) | [i] | ||
25 | Linear OA(3218, 59116, F3, 31) (dual of [59116, 58898, 32]-code) | [i] | ||
26 | Linear OA(3198, 59116, F3, 28) (dual of [59116, 58918, 29]-code) | [i] | ||
27 | Linear OA(3218, 59126, F3, 30) (dual of [59126, 58908, 31]-code) | [i] | ||
28 | Linear OA(3234, 19745, F3, 37) (dual of [19745, 19511, 38]-code) | [i] | ||
29 | Linear OA(3216, 19745, F3, 34) (dual of [19745, 19529, 35]-code) | [i] | ||
30 | Linear OA(3198, 19745, F3, 31) (dual of [19745, 19547, 32]-code) | [i] | ||
31 | Linear OA(3180, 19745, F3, 28) (dual of [19745, 19565, 29]-code) | [i] | ||
32 | Linear OA(3234, 19754, F3, 36) (dual of [19754, 19520, 37]-code) | [i] | ||
33 | Linear OA(3198, 19754, F3, 30) (dual of [19754, 19556, 31]-code) | [i] | ||
34 | Linear OA(3242, 6618, F3, 43) (dual of [6618, 6376, 44]-code) | [i] | ||
35 | Linear OA(3226, 6618, F3, 40) (dual of [6618, 6392, 41]-code) | [i] | ||
36 | Linear OA(3210, 6618, F3, 37) (dual of [6618, 6408, 38]-code) | [i] | ||
37 | Linear OA(3194, 6618, F3, 34) (dual of [6618, 6424, 35]-code) | [i] | ||
38 | Linear OA(3178, 6618, F3, 31) (dual of [6618, 6440, 32]-code) | [i] | ||
39 | Linear OA(3242, 6626, F3, 42) (dual of [6626, 6384, 43]-code) | [i] | ||
40 | Linear OA(3210, 6626, F3, 36) (dual of [6626, 6416, 37]-code) | [i] | ||
41 | Linear OA(3178, 6626, F3, 30) (dual of [6626, 6448, 31]-code) | [i] | ||
42 | Linear OA(3242, 2239, F3, 49) (dual of [2239, 1997, 50]-code) | [i] | ||
43 | Linear OA(3228, 2239, F3, 46) (dual of [2239, 2011, 47]-code) | [i] | ||
44 | Linear OA(3214, 2239, F3, 43) (dual of [2239, 2025, 44]-code) | [i] | ||
45 | Linear OA(3200, 2239, F3, 40) (dual of [2239, 2039, 41]-code) | [i] | ||
46 | Linear OA(3186, 2239, F3, 37) (dual of [2239, 2053, 38]-code) | [i] | ||
47 | Linear OA(3172, 2239, F3, 34) (dual of [2239, 2067, 35]-code) | [i] | ||
48 | Linear OA(3158, 2239, F3, 31) (dual of [2239, 2081, 32]-code) | [i] | ||
49 | Linear OA(3242, 2246, F3, 48) (dual of [2246, 2004, 49]-code) | [i] | ||
50 | Linear OA(3214, 2246, F3, 42) (dual of [2246, 2032, 43]-code) | [i] | ||
51 | Linear OA(3186, 2246, F3, 36) (dual of [2246, 2060, 37]-code) | [i] | ||
52 | Linear OA(3158, 2246, F3, 30) (dual of [2246, 2088, 31]-code) | [i] | ||
53 | Linear OA(3231, 776, F3, 55) (dual of [776, 545, 56]-code) | [i] | ||
54 | Linear OA(3219, 776, F3, 52) (dual of [776, 557, 53]-code) | [i] | ||
55 | Linear OA(3207, 776, F3, 49) (dual of [776, 569, 50]-code) | [i] | ||
56 | Linear OA(3195, 776, F3, 46) (dual of [776, 581, 47]-code) | [i] | ||
57 | Linear OA(3183, 776, F3, 43) (dual of [776, 593, 44]-code) | [i] | ||
58 | Linear OA(3171, 776, F3, 40) (dual of [776, 605, 41]-code) | [i] | ||
59 | Linear OA(3159, 776, F3, 37) (dual of [776, 617, 38]-code) | [i] | ||
60 | Linear OA(3231, 782, F3, 54) (dual of [782, 551, 55]-code) | [i] | ||
61 | Linear OA(3219, 782, F3, 51) (dual of [782, 563, 52]-code) | [i] | ||
62 | Linear OA(3207, 782, F3, 48) (dual of [782, 575, 49]-code) | [i] | ||
63 | Linear OA(3195, 782, F3, 45) (dual of [782, 587, 46]-code) | [i] | ||
64 | Linear OA(3183, 782, F3, 42) (dual of [782, 599, 43]-code) | [i] | ||
65 | Linear OA(3171, 782, F3, 39) (dual of [782, 611, 40]-code) | [i] | ||
66 | Linear OA(3159, 779, F3, 36) (dual of [779, 620, 37]-code) | [i] | ||
67 | Linear OA(3147, 779, F3, 33) (dual of [779, 632, 34]-code) | [i] | ||
68 | Linear OA(3135, 779, F3, 30) (dual of [779, 644, 31]-code) | [i] |