Information on Result #700861

Linear OA(355, 121, F3, 20) (dual of [121, 66, 21]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,5,7,11,13,16,17,19,25,31,35}, and minimum distance d ≥ |{1,3,5,…,39}|+1 = 21 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(355, 121, F3, 19) (dual of [121, 66, 20]-code) [i]Strength Reduction
2Linear OA(356, 122, F3, 20) (dual of [122, 66, 21]-code) [i]Code Embedding in Larger Space
3Linear OA(354, 120, F3, 19) (dual of [120, 66, 20]-code) [i]Truncation
4Linear OA(353, 119, F3, 18) (dual of [119, 66, 19]-code) [i]
5Linear OA(359, 132, F3, 20) (dual of [132, 73, 21]-code) [i]VarÅ¡amov–Edel Lengthening
6Linear OA(360, 138, F3, 20) (dual of [138, 78, 21]-code) [i]
7Linear OA(361, 145, F3, 20) (dual of [145, 84, 21]-code) [i]
8Linear OA(362, 153, F3, 20) (dual of [153, 91, 21]-code) [i]
9Linear OA(359, 126, F3, 20) (dual of [126, 67, 21]-code) [i]Construction X with Cyclic Codes
10Linear OA(360, 132, F3, 20) (dual of [132, 72, 21]-code) [i]
11Linear OA(362, 138, F3, 20) (dual of [138, 76, 21]-code) [i]
12Linear OOA(355, 60, F3, 2, 20) (dual of [(60, 2), 65, 21]-NRT-code) [i]OOA Folding
13Linear OOA(355, 40, F3, 3, 20) (dual of [(40, 3), 65, 21]-NRT-code) [i]