Information on Result #700891

Linear OA(350, 121, F3, 17) (dual of [121, 71, 18]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,8,10,13,16,19,22,25,26,31}, and minimum distance d ≥ |{−30,−10,10,…,48}|+1 = 18 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(352, 131, F3, 17) (dual of [131, 79, 18]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(353, 138, F3, 17) (dual of [138, 85, 18]-code) [i]
3Linear OA(354, 147, F3, 17) (dual of [147, 93, 18]-code) [i]
4Linear OA(355, 157, F3, 17) (dual of [157, 102, 18]-code) [i]
5Linear OA(355, 136, F3, 17) (dual of [136, 81, 18]-code) [i]Construction X with Cyclic Codes
6Linear OA(357, 133, F3, 19) (dual of [133, 76, 20]-code) [i]Construction XX with Cyclic Codes
7Linear OA(368, 144, F3, 22) (dual of [144, 76, 23]-code) [i]
8Linear OA(367, 141, F3, 22) (dual of [141, 74, 23]-code) [i]
9Linear OA(366, 138, F3, 22) (dual of [138, 72, 23]-code) [i]
10Linear OA(359, 136, F3, 18) (dual of [136, 77, 19]-code) [i]
11Linear OOA(350, 60, F3, 2, 17) (dual of [(60, 2), 70, 18]-NRT-code) [i]OOA Folding
12Linear OOA(350, 40, F3, 3, 17) (dual of [(40, 3), 70, 18]-NRT-code) [i]