Information on Result #700926

Linear OA(359, 136, F3, 18) (dual of [136, 77, 19]-code), using construction XX applied to C1 = C({1,10,16,19,22,25,26,31,34}), C2 = C({1,8,10,13,16,19,22,25,26,31}), C3 = C1 + C2 = C({1,10,16,19,22,25,26,31}), and C∩ = C1 ∩ C2 = C({1,8,10,13,16,19,22,25,26,31,34}) based on
  1. linear OA(345, 121, F3, 14) (dual of [121, 76, 15]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,10,16,19,22,25,26,31,34}, and minimum distance d ≥ |{−50,−30,−10,…,−32}|+1 = 15 (BCH-bound) [i]
  2. linear OA(350, 121, F3, 17) (dual of [121, 71, 18]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,8,10,13,16,19,22,25,26,31}, and minimum distance d ≥ |{−30,−10,10,…,48}|+1 = 18 (BCH-bound) [i]
  3. linear OA(355, 121, F3, 18) (dual of [121, 66, 19]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,8,10,13,16,19,22,25,26,31,34}, and minimum distance d ≥ |{−50,−30,−10,…,48}|+1 = 19 (BCH-bound) [i]
  4. linear OA(340, 121, F3, 13) (dual of [121, 81, 14]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,10,16,19,22,25,26,31}, and minimum distance d ≥ |{−30,−10,10,…,−32}|+1 = 14 (BCH-bound) [i]
  5. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
  6. linear OA(34, 10, F3, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(359, 68, F3, 2, 18) (dual of [(68, 2), 77, 19]-NRT-code) [i]OOA Folding