Information on Result #700973

Linear OA(414, 70, F4, 6) (dual of [70, 56, 7]-code), using construction XX applied to C1 = C({0,1,2,47}), C2 = C([0,3]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C({0,1,2,3,47}) based on
  1. linear OA(410, 63, F4, 4) (dual of [63, 53, 5]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,47}, and minimum distance d ≥ |{−1,0,1,2}|+1 = 5 (BCH-bound) [i]
  2. linear OA(410, 63, F4, 5) (dual of [63, 53, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 6 [i]
  3. linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,47}, and minimum distance d ≥ |{−1,0,…,4}|+1 = 7 (BCH-bound) [i]
  4. linear OA(47, 63, F4, 3) (dual of [63, 56, 4]-code or 63-cap in PG(6,4)), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
  5. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code), using
  6. linear OA(41, 4, F4, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(414, 65, F4, 2, 6) (dual of [(65, 2), 116, 7]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(414, 65, F4, 3, 6) (dual of [(65, 3), 181, 7]-NRT-code) [i]
3Digital (8, 14, 65)-net over F4 [i]