Information on Result #701015

Linear OA(441, 63, F4, 23) (dual of [63, 22, 24]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,14,22,26,30,42}, and minimum distance d ≥ |{0,2,4,…,44}|+1 = 24 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4104, 126, F4, 47) (dual of [126, 22, 48]-code) [i]Repeating Each Code Word
2Linear OA(4103, 124, F4, 47) (dual of [124, 21, 48]-code) [i]
3Linear OA(4102, 122, F4, 47) (dual of [122, 20, 48]-code) [i]
4Linear OA(4101, 120, F4, 47) (dual of [120, 19, 48]-code) [i]
5Linear OA(4100, 118, F4, 47) (dual of [118, 18, 48]-code) [i]
6Linear OA(499, 116, F4, 47) (dual of [116, 17, 48]-code) [i]
7Linear OA(498, 114, F4, 47) (dual of [114, 16, 48]-code) [i]
8Linear OA(497, 112, F4, 47) (dual of [112, 15, 48]-code) [i]
9Linear OA(496, 110, F4, 47) (dual of [110, 14, 48]-code) [i]
10Linear OA(2145, 189, F2, 47) (dual of [189, 44, 48]-code) [i]Concatenation of Two Codes
11Linear OA(2144, 186, F2, 47) (dual of [186, 42, 48]-code) [i]
12Linear OA(2143, 183, F2, 47) (dual of [183, 40, 48]-code) [i]
13Linear OA(2142, 180, F2, 47) (dual of [180, 38, 48]-code) [i]
14Linear OA(2141, 177, F2, 47) (dual of [177, 36, 48]-code) [i]
15Linear OA(2140, 174, F2, 47) (dual of [174, 34, 48]-code) [i]
16Linear OA(2139, 171, F2, 47) (dual of [171, 32, 48]-code) [i]
17Linear OA(2138, 168, F2, 47) (dual of [168, 30, 48]-code) [i]
18Linear OA(455, 93, F4, 23) (dual of [93, 38, 24]-code) [i]Construction XX with Cyclic Codes