Information on Result #701033

Linear OA(453, 88, F4, 23) (dual of [88, 35, 24]-code), using construction XX applied to C1 = C({0,1,2,3,5,6,7,9,10,11,31,47}), C2 = C([0,15]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,31,47}) based on
  1. linear OA(434, 63, F4, 15) (dual of [63, 29, 16]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,31,47}, and minimum distance d ≥ |{−2,−1,…,12}|+1 = 16 (BCH-bound) [i]
  2. linear OA(437, 63, F4, 21) (dual of [63, 26, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(443, 63, F4, 25) (dual of [63, 20, 26]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,31,47}, and minimum distance d ≥ |{−4,−3,…,20}|+1 = 26 (BCH-bound) [i]
  4. linear OA(428, 63, F4, 13) (dual of [63, 35, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(41, 7, F4, 1) (dual of [7, 6, 2]-code), using
  6. linear OA(49, 18, F4, 7) (dual of [18, 9, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(453, 44, F4, 2, 23) (dual of [(44, 2), 35, 24]-NRT-code) [i]OOA Folding