Information on Result #701040

Linear OA(449, 78, F4, 23) (dual of [78, 29, 24]-code), using construction XX applied to C1 = C({1,2,3,5,7,9,10,11,13,14,15,21,22}), C2 = C([0,21]), C3 = C1 + C2 = C({1,2,3,5,7,9,10,11,13,14,15,21}), and C∩ = C1 ∩ C2 = C([0,22]) based on
  1. linear OA(437, 63, F4, 16) (dual of [63, 26, 17]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,2,3,5,7,9,10,11,13,14,15,21,22}, and minimum distance d ≥ |{7,8,…,22}|+1 = 17 (BCH-bound) [i]
  2. linear OA(438, 63, F4, 22) (dual of [63, 25, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(441, 63, F4, 23) (dual of [63, 22, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(434, 63, F4, 15) (dual of [63, 29, 16]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,2,3,5,7,9,10,11,13,14,15,21}, and minimum distance d ≥ |{7,8,…,21}|+1 = 16 (BCH-bound) [i]
  5. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code), using
  6. linear OA(48, 12, F4, 6) (dual of [12, 4, 7]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(449, 39, F4, 2, 23) (dual of [(39, 2), 29, 24]-NRT-code) [i]OOA Folding
2Linear OOA(449, 26, F4, 3, 23) (dual of [(26, 3), 29, 24]-NRT-code) [i]