Information on Result #701043

Linear OA(454, 86, F4, 24) (dual of [86, 32, 25]-code), using construction XX applied to C1 = C({1,2,3,5,9,10,11,13,14,15,21,22,23}), C2 = C([0,21]), C3 = C1 + C2 = C({1,2,3,5,9,10,11,13,14,15,21}), and C∩ = C1 ∩ C2 = C([0,23]) based on
  1. linear OA(437, 63, F4, 16) (dual of [63, 26, 17]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,2,3,5,9,10,11,13,14,15,21,22,23}, and minimum distance d ≥ |{8,9,…,23}|+1 = 17 (BCH-bound) [i]
  2. linear OA(438, 63, F4, 22) (dual of [63, 25, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(444, 63, F4, 26) (dual of [63, 19, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(431, 63, F4, 14) (dual of [63, 32, 15]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,2,3,5,9,10,11,13,14,15,21}, and minimum distance d ≥ |{8,9,…,21}|+1 = 15 (BCH-bound) [i]
  5. linear OA(41, 7, F4, 1) (dual of [7, 6, 2]-code), using
  6. linear OA(49, 16, F4, 7) (dual of [16, 7, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(454, 43, F4, 2, 24) (dual of [(43, 2), 32, 25]-NRT-code) [i]OOA Folding