Information on Result #701050

Linear OA(447, 63, F4, 27) (dual of [63, 16, 28]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,31,47}, and minimum distance d ≥ |{−4,−3,…,22}|+1 = 28 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4110, 126, F4, 55) (dual of [126, 16, 56]-code) [i]Repeating Each Code Word
2Linear OA(4109, 124, F4, 55) (dual of [124, 15, 56]-code) [i]
3Linear OA(4108, 122, F4, 55) (dual of [122, 14, 56]-code) [i]
4Linear OA(4107, 120, F4, 55) (dual of [120, 13, 56]-code) [i]
5Linear OA(4106, 118, F4, 55) (dual of [118, 12, 56]-code) [i]
6Linear OA(4105, 116, F4, 55) (dual of [116, 11, 56]-code) [i]
7Linear OA(2157, 189, F2, 55) (dual of [189, 32, 56]-code) [i]Concatenation of Two Codes
8Linear OA(2156, 186, F2, 55) (dual of [186, 30, 56]-code) [i]
9Linear OA(2155, 183, F2, 55) (dual of [183, 28, 56]-code) [i]
10Linear OA(2154, 180, F2, 55) (dual of [180, 26, 56]-code) [i]
11Linear OA(452, 77, F4, 27) (dual of [77, 25, 28]-code) [i]Construction XX with Cyclic Codes
12Linear OA(452, 78, F4, 27) (dual of [78, 26, 28]-code) [i]
13Linear OA(451, 76, F4, 27) (dual of [76, 25, 28]-code) [i]
14Linear OA(450, 72, F4, 27) (dual of [72, 22, 28]-code) [i]
15Linear OA(456, 79, F4, 29) (dual of [79, 23, 30]-code) [i]
16Linear OA(457, 79, F4, 30) (dual of [79, 22, 31]-code) [i]
17Linear OA(456, 78, F4, 30) (dual of [78, 22, 31]-code) [i]
18Linear OA(453, 75, F4, 28) (dual of [75, 22, 29]-code) [i]