Information on Result #701071

Linear OA(439, 71, F4, 17) (dual of [71, 32, 18]-code), using construction XX applied to C1 = C({1,3,5,9,10,11,13,14,15,21,22,23}), C2 = C({1,3,5,6,9,11,13,14,15,21,22,23}), C3 = C1 + C2 = C({1,3,5,9,11,13,14,15,21,22,23}), and C∩ = C1 ∩ C2 = C({1,3,5,6,9,10,11,13,14,15,21,22,23}) based on
  1. linear OA(434, 63, F4, 15) (dual of [63, 29, 16]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,3,5,9,10,11,13,14,15,21,22,23}, and minimum distance d ≥ |{9,10,…,23}|+1 = 16 (BCH-bound) [i]
  2. linear OA(434, 63, F4, 15) (dual of [63, 29, 16]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,3,5,6,9,11,13,14,15,21,22,23}, and minimum distance d ≥ |{11,12,…,25}|+1 = 16 (BCH-bound) [i]
  3. linear OA(437, 63, F4, 17) (dual of [63, 26, 18]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,3,5,6,9,10,11,13,14,15,21,22,23}, and minimum distance d ≥ |{9,10,…,25}|+1 = 18 (BCH-bound) [i]
  4. linear OA(431, 63, F4, 13) (dual of [63, 32, 14]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {1,3,5,9,11,13,14,15,21,22,23}, and minimum distance d ≥ |{11,12,…,23}|+1 = 14 (BCH-bound) [i]
  5. linear OA(41, 4, F4, 1) (dual of [4, 3, 2]-code), using
  6. linear OA(41, 4, F4, 1) (dual of [4, 3, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.