Information on Result #701096

Linear OA(462, 81, F4, 32) (dual of [81, 19, 33]-code), using construction XX applied to C1 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,31,43,47}), C2 = C([0,26]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,26,31,43,47}) based on
  1. linear OA(453, 63, F4, 31) (dual of [63, 10, 32]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,31,43,47}, and minimum distance d ≥ |{−5,−4,…,25}|+1 = 32 (BCH-bound) [i]
  2. linear OA(447, 63, F4, 27) (dual of [63, 16, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(456, 63, F4, 32) (dual of [63, 7, 33]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,26,31,43,47}, and minimum distance d ≥ |{16,38,60,…,5}|+1 = 33 (BCH-bound) [i]
  4. linear OA(444, 63, F4, 26) (dual of [63, 19, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(46, 15, F4, 4) (dual of [15, 9, 5]-code), using
  6. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(462, 27, F4, 3, 32) (dual of [(27, 3), 19, 33]-NRT-code) [i]OOA Folding