Information on Result #701107

Linear OA(461, 80, F4, 32) (dual of [80, 19, 33]-code), using construction XX applied to C1 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,31,47}), C2 = C([0,27]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,26,27,31,47}) based on
  1. linear OA(450, 63, F4, 30) (dual of [63, 13, 31]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,31,47}, and minimum distance d ≥ |{−4,−3,…,25}|+1 = 31 (BCH-bound) [i]
  2. linear OA(450, 63, F4, 30) (dual of [63, 13, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(456, 63, F4, 34) (dual of [63, 7, 35]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,26,27,31,47}, and minimum distance d ≥ |{−4,−3,…,29}|+1 = 35 (BCH-bound) [i]
  4. linear OA(444, 63, F4, 26) (dual of [63, 19, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(41, 7, F4, 1) (dual of [7, 6, 2]-code), using
  6. linear OA(44, 10, F4, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,4)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(461, 40, F4, 2, 32) (dual of [(40, 2), 19, 33]-NRT-code) [i]OOA Folding
2Linear OOA(461, 26, F4, 3, 32) (dual of [(26, 3), 17, 33]-NRT-code) [i]