Information on Result #701147

Linear OA(424, 93, F4, 9) (dual of [93, 69, 10]-code), using construction XX applied to C1 = C({2,5,6,14,21}), C2 = C({2,5,6,14,17}), C3 = C1 + C2 = C({2,5,6,14}), and C∩ = C1 ∩ C2 = C({2,5,6,14,17,21}) based on
  1. linear OA(420, 85, F4, 7) (dual of [85, 65, 8]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,14,21}, and minimum distance d ≥ |{−4,−1,2,…,14}|+1 = 8 (BCH-bound) [i]
  2. linear OA(418, 85, F4, 7) (dual of [85, 67, 8]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,14,17}, and minimum distance d ≥ |{2,5,8,…,20}|+1 = 8 (BCH-bound) [i]
  3. linear OA(422, 85, F4, 9) (dual of [85, 63, 10]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,14,17,21}, and minimum distance d ≥ |{−4,−1,2,…,20}|+1 = 10 (BCH-bound) [i]
  4. linear OA(416, 85, F4, 5) (dual of [85, 69, 6]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,14}, and minimum distance d ≥ |{2,5,8,11,14}|+1 = 6 (BCH-bound) [i]
  5. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(41, 3, F4, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4259, 262238, F4, 35) (dual of [262238, 261979, 36]-code) [i]Construction X with Cyclic Codes
2Linear OOA(424, 46, F4, 2, 9) (dual of [(46, 2), 68, 10]-NRT-code) [i]OOA Folding