Information on Result #701154

Linear OA(57, 28, F5, 4) (dual of [28, 21, 5]-code), using construction XX applied to C1 = C({0,1,19}), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C({0,1,2,19}) based on
  1. linear OA(55, 24, F5, 3) (dual of [24, 19, 4]-code or 24-cap in PG(4,5)), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,19}, and minimum distance d ≥ |{−1,0,1}|+1 = 4 (BCH-bound) [i]
  2. linear OA(55, 24, F5, 3) (dual of [24, 19, 4]-code or 24-cap in PG(4,5)), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
  3. linear OA(57, 24, F5, 4) (dual of [24, 17, 5]-code), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,19}, and minimum distance d ≥ |{−1,0,1,2}|+1 = 5 (BCH-bound) [i]
  4. linear OA(53, 24, F5, 2) (dual of [24, 21, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
  5. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.