Information on Result #701229

Linear OA(534, 62, F5, 18) (dual of [62, 28, 19]-code), using the cyclic code C(A) with length 62 | 53−1, defining set A = {1,4,6,11,16,17,19,21,22,24,31,32}, and minimum distance d ≥ |{16,17,…,33}|+1 = 19 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(533, 61, F5, 17) (dual of [61, 28, 18]-code) [i]Truncation
2Linear OA(538, 75, F5, 18) (dual of [75, 37, 19]-code) [i]VarÅ¡amov–Edel Lengthening
3Linear OA(537, 65, F5, 19) (dual of [65, 28, 20]-code) [i]Construction X with Cyclic Codes
4Linear OA(541, 69, F5, 20) (dual of [69, 28, 21]-code) [i]
5Linear OA(543, 71, F5, 21) (dual of [71, 28, 22]-code) [i]
6Linear OA(540, 68, F5, 20) (dual of [68, 28, 21]-code) [i]Construction XX with Cyclic Codes
7Linear OOA(534, 31, F5, 2, 18) (dual of [(31, 2), 28, 19]-NRT-code) [i]OOA Folding
8Linear OOA(534, 20, F5, 3, 18) (dual of [(20, 3), 26, 19]-NRT-code) [i]