Information on Result #701297

Linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,27,34,41}, and minimum distance d ≥ |{−7,−6,…,23}|+1 = 32 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(739, 48, F7, 30) (dual of [48, 9, 31]-code) [i]Strength Reduction
2Linear OA(739, 48, F7, 29) (dual of [48, 9, 30]-code) [i]
3Linear OA(739, 48, F7, 28) (dual of [48, 9, 29]-code) [i]
4Linear OA(784, 90, F7, 63) (dual of [90, 6, 64]-code) [i]Repeating Each Code Word
5Linear OA(783, 88, F7, 63) (dual of [88, 5, 64]-code) [i]
6Linear OA(796, 103, F7, 72) (dual of [103, 7, 73]-code) [i]Juxtaposition
7Linear OA(755, 78, F7, 30) (dual of [78, 23, 31]-code) [i]Construction X with Cyclic Codes
8Linear OA(755, 76, F7, 31) (dual of [76, 21, 32]-code) [i]
9Linear OA(754, 73, F7, 31) (dual of [73, 19, 32]-code) [i]
10Linear OA(749, 68, F7, 28) (dual of [68, 19, 29]-code) [i]
11Linear OA(749, 66, F7, 29) (dual of [66, 17, 30]-code) [i]
12Linear OA(752, 73, F7, 29) (dual of [73, 21, 30]-code) [i]Construction XX with Cyclic Codes
13Linear OA(750, 71, F7, 28) (dual of [71, 21, 29]-code) [i]
14Linear OA(745, 64, F7, 27) (dual of [64, 19, 28]-code) [i]
15Linear OA(747, 64, F7, 28) (dual of [64, 17, 29]-code) [i]
16Linear OA(757, 73, F7, 35) (dual of [73, 16, 36]-code) [i]
17Linear OOA(739, 24, F7, 2, 31) (dual of [(24, 2), 9, 32]-NRT-code) [i]OOA Folding
18Linear OOA(739, 16, F7, 3, 31) (dual of [(16, 3), 9, 32]-NRT-code) [i]